skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sincomb, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    This paper addresses the pulsating motion of cerebrospinal fluid in the aqueduct of Sylvius, a slender canal connecting the third and fourth ventricles of the brain. Specific attention is given to the relation between the instantaneous values of the flow rate and the interventricular pressure difference, needed in clinical applications to enable indirect evaluations of the latter from direct magnetic resonance measurements of the former. An order of magnitude analysis accounting for the slenderness of the canal is used in simplifying the flow description. The boundary layer approximation is found to be applicable in the slender canal, where the oscillating flow is characterized by stroke lengths comparable to the canal length and periods comparable to the transverse diffusion time. By way of contrast, the flow in the non-slender opening regions connecting the aqueduct with the two ventricles is found to be inviscid and quasi-steady in the first approximation. The resulting simplified description is validated by comparison with results of direct numerical simulations. The model is used to investigate the relation between the interventricular pressure and the stroke length, in parametric ranges of interest in clinical applications. 
    more » « less